
KING MONGKUT’S UNIVERSITY OF TECHNOLOGY LATKRABANG

FACULTY OF ENGINEERING

01416520 – VISION SYSTEM FOR MOBILE ROBOTICS

BEHAVIORAL CLONING

INSTRUCTED BY: BEEYING SAEUNG

 NAME:

ANANCHANA LERTPHITAKSUNTORN 62011087

NATTARRUD CHAROENNITHI 62011178

 PANADDA LUCKANANUKUL 62011182

 DATE OF SUB: 10TH DEC 2021

 2

ABSTRACT

Behavioral cloning is a method which human skills are captured and reproduced in a

computer program. Self-driving cars are one of the main headline scopes for AI implementation

of behavioral cloning. In this project, we study how to gather, train, and implement CNN model

on self-driving cars. Udacity simulator is a driving simulator where we can drive and collect data

simultaneously. Data is then preprocessed and augmented to improve training time. The model

has an accuracy of 53% and can drive the car autonomously on both tracks successfully for an

infinite number of times.

 3

CONTENTS

1. DATASET DESCRIPTION .. 4

2. TRANING SETTING ... 6

- DATA AUGMENTATION .. 6

- MODEL DESIGN .. 7

- HYPERPARAMETERS ... 7

3. LOSS FUNCTION .. 8

4. RESULT .. 9

5. CONCLUSION AND FUTURE WORK .. 10

 4

1. DATASET DESCRIPTION

In order to train the model, we must get data for driving. Udacity Simulator enabled

us to gather the dataset. The car in the simulator has three camera images: a center

camera, a left camera, and a right camera. will be collected on a continuous basis

while in training mode.

 We gathered a total of 8,038 observations. Each with 6 features and 1 target.

[center, left, right, throttle, brake, speed, steering_angle]

 Train data : 80%

 Validation data : 10%

 Test data : 10%

 The technique used for gathering driving data for each map is

1. 1 lap clockwise

2. 1 lap counter clockwise

3. 1 lap recovery

Recovery driving is used when the trained model drives out of lane at a specific

location and needs to recover.

left camera center camera right camera

 5

Steering angles are plotted as shown above, there are high amounts of kurtosis.

Thus, the model will mostly drive straight, which is good for straight roads but bad for

sharp curves. Some data augmentation is required to create better distributions.

 6

2. TRANING SETTING

- DATA AUGMENTATION

Image flipping

To normalize the steering angle distribution, the images were flipped and

multiplied their steering angle by -1. This technique doubles the size of our dataset.

RGB to HSV color space conversion

We reduced the sizes of the images by a factor of 10 and converted them to HSV

colorspace. This reduced the number of parameters and dramatically increased

training times. All pixel data is normalized and standardized in the first layer of the

CNN via a Lambda function.

 7

- MODEL DESIGN

Total trainable parameters: 36,737

- HYPERPARAMETERS

optimizer = adam

epochs = 60

learning rate = 0.0007

batch size = 128

 8

3. LOSS FUNCTION

We use mean squared error to evaluate our model at every epoch. Mean squared

error uses y true and y predicted to estimate the error and how close the model is to the

real output. The closer the loss function is to 0, the better is our model at learning the

dataset.

Here, we can see that the loss function decreases for each epoch. After 60 epochs,

the loss value starts stabilizing so we stop the training. The final validation loss value after

60 epochs is 0.06.

 9

4. RESULT

The model used on the test set has an accuracy of 53%. The model can be further

improved by gathering more training data. Even though the accuracy seems low, the

model performs well in a real driving environment.

The model can perform on both lake and jungle tracks successfully and

indefinitely.

DEMO VIDEO

Lake track: https://youtu.be/EfAdbgRNFuc

Jungle track: https://youtu.be/qProL0ACKqQ

 10

5. CONCLUSION AND FUTURE WORK

From the result, the model can drive successfully around two maps. There are still

some errors as the car can steer out of the lane. To fix this issue is gaining the recovery

dataset which improves the performance of the model.

As a future work, We'll concentrate on including object detection features so that the

vehicle can operate in a real-world setting with suitable control and speed variation

dependent on objects and surroundings.

 11

REFERENCES

1. KERAS. (n.d.). Retrieved from https://keras.io

2. tf.keras. (2021, 5 11). Retrieved from TensorFlow:

https://www.tensorflow.org/api_docs/python/tf/keras/

3. self-driving-car-sim. (n.d.). Retrieved from GitHub:

https://github.com/udacity/self-driving-car-sim

